COPRA FEARI

A Novel Roll Forming Machine Optimisation CAE Tool expanding the COPRA® Eco System

Maximilian SedImaier

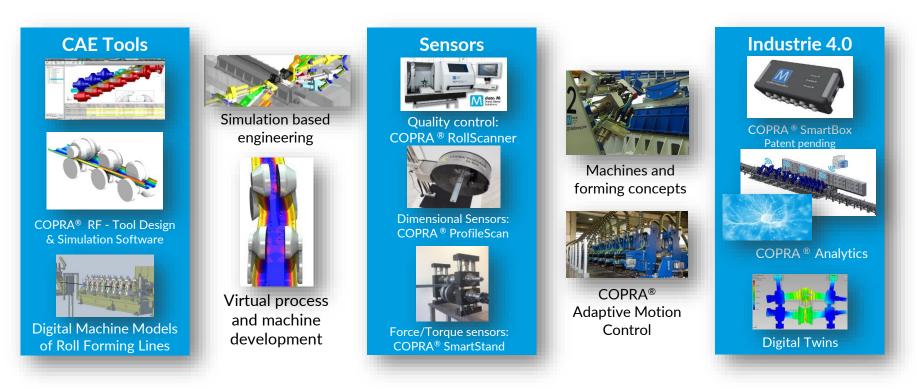
data M Sheet Metal Solutions

Agenda

- data M's COPRA® Eco System
- Finite Element Simulation of roll forming
- Novel Roll Forming Machine Optimisation CAE Tool
- Summary and Outlook

data M Sheet Metal Solutions GmbH

- Software company for roll forming
- Around 35 employees, Founded in 1987
- Located south from Munich
- R&D intensive SME
- Products:
 - ✓ Design software COPRA[®] RF
 - ✓ Simulation software COPRA[®] FEA RF
 - ✓ Sensor technology
 - ✓ Quality control
 - ✓ Machine control software COPRA[®] AMC



Source: http://www.alpen-panoramen.de/panorama.php?pid=4663

- Consulting:
 - ✓ Design services for complex rollformed products and processes
 - ✓ Development of advanced machine and process concepts

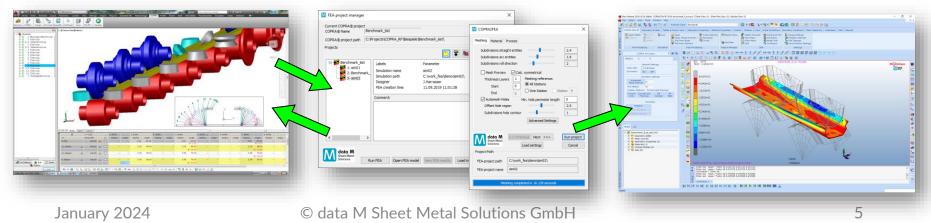
The COPRA® Digital Roll Forming EcoSystem

January 2024

© data M Sheet Metal Solutions GmbH

Finite Element Simulation of Roll Forming

COPRA[®] RF

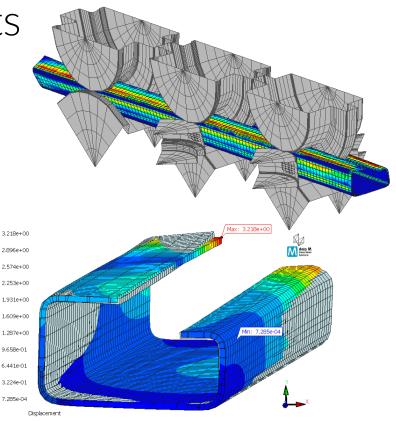

- Definition of the process
- Tool design
- Create hole pattern
- Project administration
- Material database

FEA Project Manager & COPRA2FEA

- Administration of simulations and design state
- Definition of Mesh, type of simulation, material, ...
- Preprocessor for an automatic model creation

COPRA® FEA RF

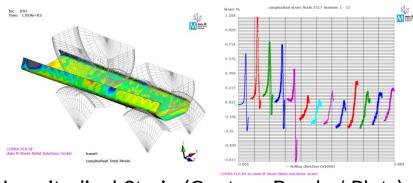
- Based on MSC Marc/Mentat
- Modell can be modified (Material, mesh, ...)
- Simulation of the forming process
- Evaluation of the simulation results with special tools and commands



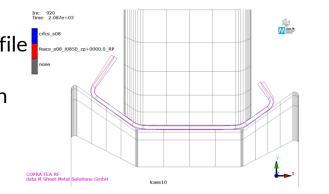
Standard Simulation Results

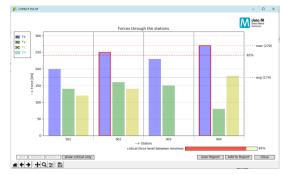
FEM Simulation is essential to optimize the Process and Tool Design and to avoid Shape Defects in the Profile

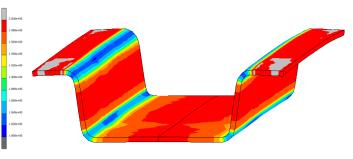
Results of FEM Simulation:


- Profile Geometry
- Sheet behavior while entering the Rolls
- Longitudinal strains
- Defects like waviness or bow
- Forming Forces
- Deformation after Cutting (Endflare)

A Novel Roll Forming Machine Optimisation CAE Tool



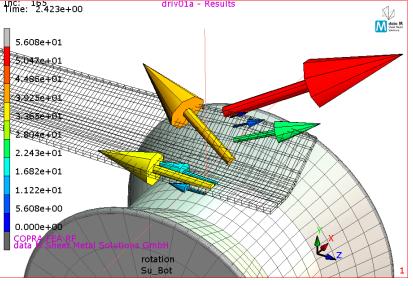

Standard Simulation Results - Examples


Longitudinal Strain (Contour Bands / Plots)

Cross Sections of Profile to compare: • Simulation vs. Design • Multiple Stations • Multiple Positions

Sheet Thickness, Work Hardening, ...

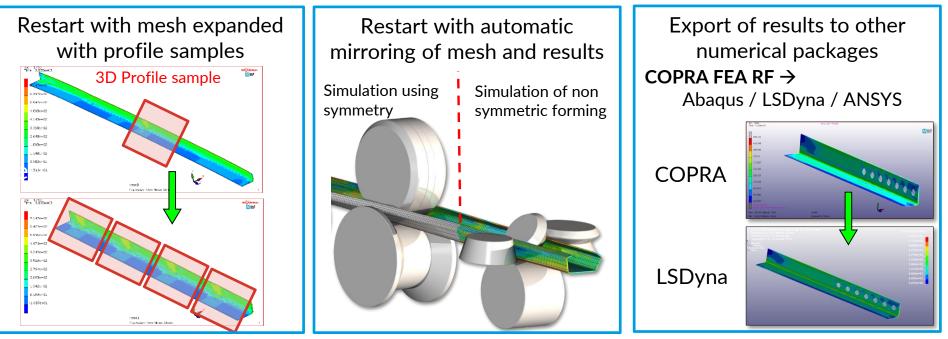
January 2024


© data M Sheet Metal Solutions GmbH

Simulation with Friction and Rotation Rolls

	— Тоо	ling (Cont	tact		
Conta	Contact Status			Contact Exposure		
Fn	Fn.z	•	S	Sn	Sn.x	-
Fμ	Fµ.x	•	S	Gμ	Sµ.x	-
Fn		S	Sn	Sn Top	-	
Fμ		Sµ		Sµ Bot	-	
		We	ar -			
Scalar: total Wear Wear Rate				tot. Wear Station		
				Sliding Velocity		ty
Wea	Wear Rate (Sliding)			Sliding Velocity		
	Fn Fµ Fn	Contact State Fn Fn.z Fp Fp.x Fn Fu total We Wear Ra	Contact Status Fn Fn.z Fµ Fµ.x Fn Fµ We total Wear Wear Rate	Contact Status 0 Fn Fn.z ▼ 5 Fµ Fµ.x ▼ 5 Fn 5 Fµ 5 Fµ 5 S Fu 5 S S S S S S S S S S S S S	Fn Fn.z ▼ Sn Fµ Fµ.x ▼ Sµ Fn Sn Sµ Fµ Vear tot Wear Rate SI	Contact Status Contact Exposur Fn Fn.z Sn Sn.x Fµ Fµ.x Sµ Sµ.x Fn Sn Sn Top Fµ Sµ Sµ Bot

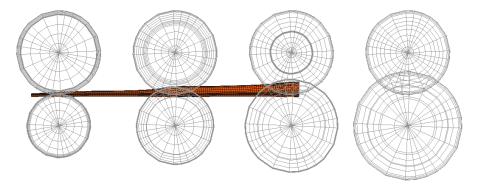
- Contact Status
- Normal Forces and Stresses
- Maximum Contact normal Force
- Friction Forces and Stresses
- Relative Velocities
- Wear of Sheet Surface (per Station / total)



Friction Stress in Bottom Roll

COPRA FEA Mapping Tool

COPRA FEA Mapper offers the possibilities to prepare Simulation results for subsequent simulations or add additional result quantities like sheet thickness.

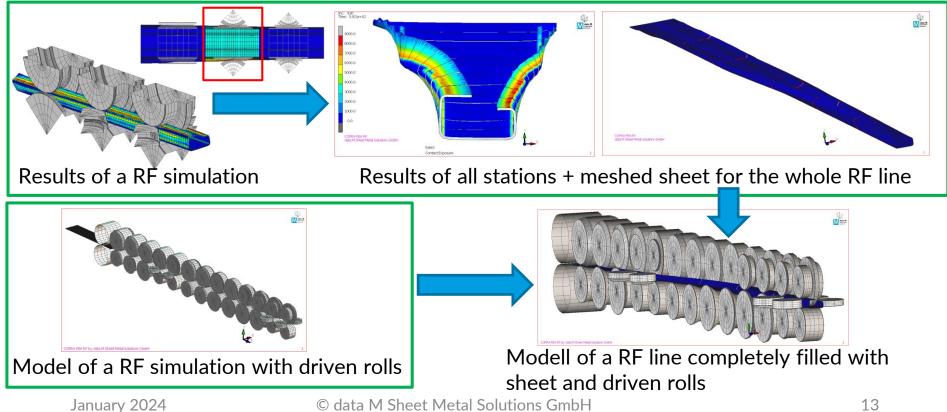

January 2024

© data M Sheet Metal Solutions GmbH

Motivation for Novel Simulation Approach

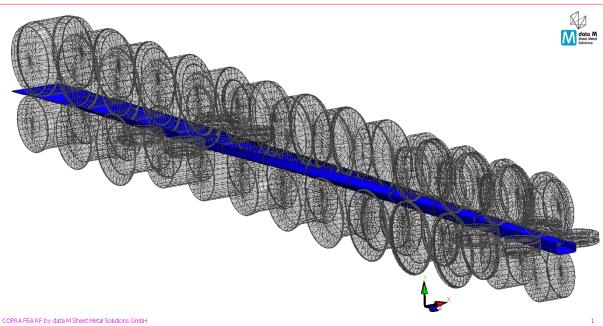
- Increasing need to optimize Machine setup
 - Minimize power consumption
 - Minimize tool wear
 - Optimize torque to drive the rolls
 - Optimize the sheet velocity
 - Increase process robustness

- State of the Art Simulations:
 - mainly focusing on the sheet behavior, not on the machine
 - Sheet is only in contact with some stations
 - Simulation with a sheet filling the complete machine would lead to extremely high and nonpractical calculation times



Novel Simulation Approach

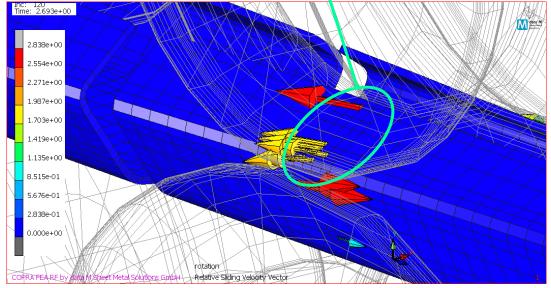
- Simulation roll forming line completely filled with sheet
- Model utilize results of a previously performed state of the art roll forming Simulation
- Simulation results are machine related values like torque, sheet velocity, power consumption


Model Description

Model properties

- Interactioin of all rolls and the sheet is modelled
- Forming simulation results like stresses and strains are taken into account
- Local mesh refinements to improve the simulation of contact zones
- Sheet has to move only a short distance → reduced calculation time

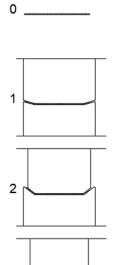
Modell of a RF line completely filled with sheet and driven rolls

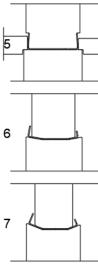

January 2024

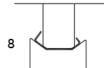
Potential simulation results

- Roll torque or rotational speed
- Feeding or braking rolls
- Sheet velocity / Line speed
- Relative velocity roll vs. sheet
- Detailed contact results (normal- or friction stress)
- forming and friction work
- Overall Power consumption

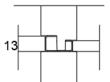
Area with automatically refined mesh

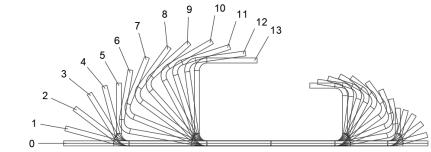

Relative velocity (vector plot)

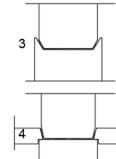

A Novel Roll Forming Machine Optimisation CAE Tool



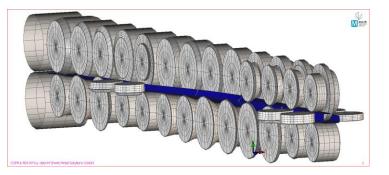
- Asymmetric C-profil
- 13 forming stations
- Stations with top and bottom rolls and sometimes side rolls




9

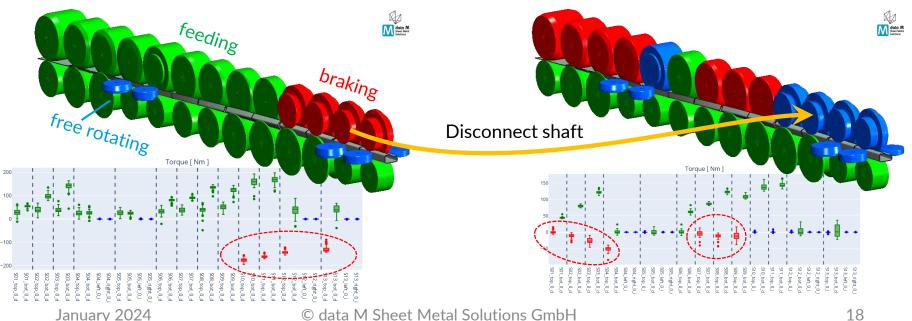


10



Example C - Profile

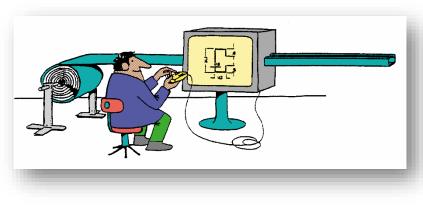
- Two different setups of roll drive are studied
- Investigation of sheet velocity, forming and friction work and feeding or braking rolls
- 1st simulation:
 - Top rolls: all driven
 - Bottom rolls: all driven
 - Side rolls: free rotating
- 2nd simulation:
 - Top rolls: some driven, some free rotating (selection based on first simulation)
 - Bottom rolls: all driven
 - Side rolls: free rotating


Example C - Profile

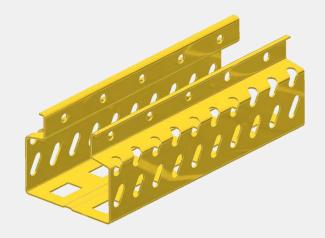
1st simulaiton:

- V_{sheet} = 7,16 mm/s
- Percentage of friciton work = 36%

2nd simulaiton:


- V_{sheet} = 7,34 mm/s
- Percentage of friciton work = 26%

Summary and Outlook


- Summary
 - Novel Simulation Approach allows to get machine related results
 - Calculation time is dramatically reduced
 - Possibility of virtual and cost efficient machine setup optimisation
 - Optimisation tool for improved process efficiency
- Outlook
 - Further improve the Simulation Model by calibration with test results
 - Include new functionalities into standard software

data M Sheet Metal Solutions GmbH Am Marschallfeld 17 | 83626 Valley | Germany Tel.: +49 8024 640-0 | Fax: +49 8024 640-300 datam@datam.de | www.datam.de | www.copra.info

